Implement a multiplier for binary numbers using digital logic.
Author Archives: Erik Cheever
Look ahead carry
The adder we build in lab is, in practice, slow if the addition involves inputs with many bits (because the Carry signal must propagate from the first stage to the last). Research a “look ahead carry adder”, describe why it is faster, and implement it.
Motor Control Ideas
Design a controller that will make a motor spin, but occasionally remove the drive signal and measure the speed of the the motor by measuring the back emf.
Design a stepper motor controller.
Design a motor controller for constant current drive.
Chain saw control
One way to mill boards from a tree is with a chainsaw mill which pulls a chain saw through a large piece of wood.
The chainsaw is typically moved by hand and the user slows down and speeds up depending on how hard it is to cut the wood, which precludes attaching a constant speed drive to move the saw.
Recording the sound of the saw and analyzing its frequency content might be able to be done acoustically, and the chainsaw motion controlled accordingly – perhaps a good E90.
Find an application for an embedded radar system – an outdoor robot? Automobile detection – speed sensing?
https://www.electronicdesign.com/industrial-automation/radar-isn-t-just-cars-and-aviation
Make something interesting with Low Cost Digital Light Processor (i.e., projector).
http://www.ti.com/tool/DLPDLCR2000EVM
http://www.ti.com/general/docs/video/watch.tsp?entryid=5519558634001
Build a power meter for a bicycle.
Source: Watteam Home – Watteam
MAX30101 Pulse Oximeter – Maxim | DigiKey
Design a wearable fitness monitor that measure pulse rate and oxygen saturation level of blood.
CC2650STK Texas Instruments | Development Boards, Kits, Programmers | DigiKey
Design some kind of sensing network using the TI sensor tag – available in bluetooth and wifi.
Source: CC2650STK Texas Instruments | Development Boards, Kits, Programmers | DigiKey
Design an I2S to SPI bridge (electronics / audio / microcontroller)
I2S is a popular digital interface for audio, but is not supported on many microcontrollers. Design an interface from I2S to SPI (or I2C) that uses the smallest possible processor to do the work. Build a PCB/develop software….
Determine location of guitar pluck from the sound created
See file here The file links to a paper entitled “Extracting the fingering and the plucking points on a guitar string from a recording”. Either explore the process (E12 project), or implement it (E71) in real time (E90)
Research Bond graphs and write a paper
Research Bond graphs – a technique developed for handling linear systems (mechanical, electrical…) under a single framework. https://en.wikipedia.org/wiki/Bond_graph
Model a nerve action potential using the Hodgkin-Huxley model
The dynamics of the voltage across a nerve membrane are well defined by a set of three coupled non-linear equations. MATLAB (or another tool) can be used to model these equations and accurately predict the dynamics of a nerve firing.
Make an animation of inner ear demo from class
Make an animation (either MATLAB or web-based) of the inner ear example from class. This involved some simulation and some relatively simple graphics programming. You could also update and expand this web page (http://www.swarthmore.edu/NatSci/echeeve1/Ref/InEar/InnerEar.html) to include the animation.
Use the Makey-Makey with Arduino
The Makey Makey is essential a generalized input device – a touch keyboard that can be used in many different ways.
https://learn.sparkfun.com/tutorials/makey-makey-advanced-guide
20 Unbelievable Arduino Projects
Use this to get some ideas, though some are rather complex and/or expensive.
Source: 20 Unbelievable Arduino Projects
Arduino : Adafruit Industries, Unique & fun DIY electronics and kits
Search for kits and projects on the Adafruit website
Source: Arduino : Adafruit Industries, Unique & fun DIY electronics and kits
Top 10 Kickass Arduino Projects
The Arduino is a cheap electronics board that allows you to make your own electronics without a ton of coding experience. We love the Arduino, but like any electronics project, coming up with ideas for what to build is tough. Whether you’re just looking for inspiration or just need a place to start, let’s take a look at ten of the coolest Arduino projects.
Source: Top 10 Kickass Arduino Projects
Some project on Arduino website
Note: even some of the ones marked Easy may not be so easy – also some require expensive extras.
Source: Arduino Playground – Ideas
Hack a servo motor for continuous rotation
The servo’s we have used only have about 180 degrees of rotation. You can make some fairly simple changes to modify the servo to rotate continuously so it could be used to drive wheels on a robot, or any other application that involves continuous rotation.
https://learn.adafruit.com/modifying-servos-for-continuous-rotation/overview
Smoke detector that turns off when you say “I’m cooking”
Build a smoke detector that turns off when you say “I’m cooking”. Microprocessor/signal processing.
Simplelink SensorTag – TI.com
Develop a low power (battery driven) wireless device/sensor.
The Bluetooth Smart SensorTag is designed to shorten the design time for Bluetooth App development from months to hours by allowing App developers to write Apps that enable and use advanced sensors directly from a smartphone without any firmware or embedded software development.
Source: Simplelink SensorTag – TI.com
Modes on a drumhead
Explore modes on a drumhead – similar to modes on a guitar string, but in 2 dimensions.
Cloth modeling
Cloth modeling – Wikipedia, the free encyclopedia.
Or – do a search for cloth physics.
This is very similar to the spider on a web project idea.
Pulse Oximeters – Maxim
Pulse Oximeters – Maxim. Also – TI has information
Model a non-linear pendulum that has magnets.
Check the video below. It is a simple pendulum, but reacts to magnets near the base. A non-linear problem to be modeled with RK – but not too difficult. http://en.wikipedia.org/wiki/Force_between_magnets#Magnetic_dipole-dipole_interaction
Implement an adjustable step-size RK algorithm for animations
The animation system at http://lpsa.swarthmore.edu/Animations/ uses a fixed step size animation. Alter the code to use a variable step size.
Use an animation system (see below) to develop animations for homework problems.
Use the animation system (http://lpsa.swarthmore.edu/Animations/) developed by a student a few years ago to develop animations for some of the homework problems.
Use simulink and MATLAB together to simulate a system (and animate it).
Use simulink and MATLAB together to simulate a system (and animate it). You could also do it all in MATLAB. The coupled pendulum system comes to mind.
Simulate this non-linear system with spinning magnets.
Simulate the system shown using Runge-Kutta (it is nonlinear, but not too complex). http://en.wikipedia.org/wiki/Force_between_magnets#Magnetic_dipole-dipole_interaction